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VISIBILITY PROBABILITIES AND MOMENTS OF MEASURES OF VISIBILITY

ON CURVES IN THE PLANE FOR POISSON SHADOWING PROCESSES

By

M. Yadin and S. Zacks*)

Technion, Israel Institute of Technology
and

State University of New York at Binghamton

Abstract

The present study generalizes the methodology developed in [10] to
determine visibility probabilities of points in the plane, when shadows
are cast by a Poisson field of random objects (disks), given a source
of light in the origin. Furthermore, a technique is developed for the
determination of the moments of a visibility measure on star-shaped
curves in the plane. A numerical example is provided to illustra.e the
method in some special case.
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1. Introduction

In a previous paper (10] we studied the distribution of a measure

of visibility on a circle, or on specified arcs on the circumference of

the circle, when random number of disks of random size are randomly

distributed within the circle, according to a specified Poisson field.

These disks obscure the visibility (cast shadows) on portions of the

specifieo arcs, for an observer (source of light) located at the center.

We provided a method of computing the moments of the measure of visibil-

ity, to any desired order by a recursive technique. We also approximated

the distribution of the normalized measure of visibility on (0,1) by a

beta distribution mixed with a two-point discrete distribution. The

present study provides a generalization of the previous methodology to

any star-shaped curves in the plane, when the random disks are distri-

buted in a specified region according to a Poisson field. This general-

ization can treat a wide class of geometrical probability problems of

line of sight, visibility measures on curves, etc. More specifically,

in Section 2 we introduce the general structure of the field of obstacles

(disks) and the associated visibility problems. In Section 3 we further

develop the basic results to obtain visibility probabilities of Doints on

star-shaped curves in the plane. Section 4 is devoted to the definition

and derivation of special functions (K-functions) required for the deter-

mination of visibility probabilities. In Section 5 we discuss the measure

of visibility on smooth star-shaped curves. We develop, furthermore, re-

cursive formulae for the computation of the moments of the measure of

visibility. Section 6 provides a complete theoretical development and

numerical computations of a special case of annular region, chosen to

illustrate the methodology and show an example of actual computations.

It is shown that the mixed-beta distribution provides an excellent

approximation to the exact distribution of the measure of visibility, in

the special case examined in Section 6.

The literature on shadowing processes is quite limited. Chernoff

and Daly [2] studies the distribution of length of shadows of disks on a

line. The shadowing problem, however, is a special case of the general

coverage problem on which there is extensive literature. In particular



Lrefer to the studies of Robbins (5,6], Ailam [1], Greenberg [4], Siegel
(7,8] and the monograph of Solomon (9] which summarizes many of the

important results.
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2. Poisson Random Fields and Visibility Probabilities

Consider a countable set of disks, V , scattered on the plane.

Each disk is specified by a vector (p,O,y) , where p , 0 : p < ,

and 8 , -n : 8 < r are the polar coordinates of its center with

respect to an origin 0 (observation point, source of light); and

y , 0 T y < y* , is its diameter. Let S0 denote the collection of

Borel subsets of the space.

S0 - {(p,G,y): Osp<w, -V58<7, 0iy<y*} . (2.1)

For every B e So  let N(B} denote the number of disks such that

(p,8,y)eB (satisfying condition B). If N{B} is a random variable

for every B e S then the elements of D are called random disks.

In particular, the elements of D are called Poisson random disks if

for every B e So  N{B} has a Poisson distribution with mean

v{B} - 1 f B I dG(ylp,e)H(dp,d8) , (2.2)

where p , O<u<- , is an intensity parameter; H(p,e) and G(ylp,e)

are, respectively, the sigma-finite measure of the location coordinates

(p,8) and the conditional c.d.f. of the diameter, y , given (p,e)

The special case in which H(do,de) = pdpd8 and G(ylp,a) = G(y)

is called the standard case. The standard case is the one in which the

centers of the disks are uniformly distributed on the plane and their

diameters are independent of their location. in this case

y*
v{B} -f B .(y)dG(y) , (2.3)

0

where V is the mean number of disks per unit area; 3(y) is the area

of the region in which disks of diameter y , satisfying'condition B

are centered.

The theoretical framework is not restricted to random disks in the

plane, but can be generalized to Poisson random objects in the plane,

or even more generally in the space, by replacing the parametric vectors

(p,O,y) with a general parametric vectors (n 1,...,n) , which charac-

terize the location, orientation, shape and size of a family of objects.
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In such cases S0  and S are properly generalized. In order to sin-0 0plify the presentation, we restrict attention in the present study to

the family of random disks in the plane. The approach, however, is valid

for general families.

A natural requirement for shadowing processes is that the source of

light (the origin) is uncovered. We therefore introduce the structural

condition

C0  {(p,8,y); 2 p<m , -W8<W, O<y<y*} (2.4)0 2

and assume that all random disks satisfy C0 . In special cases one con-

siders more stringent structural conditions, specified by sets C con-

tained in C 0 For example, in the previous paper of Yadin and Zacks

(10] the structural condition considered is

C 10,y); Z-,p<l 1- -i O<r <y:51}

Let P be a point in the plane. P is said to be visible (in light)

if the line segment OP does not intersect any random disk. The set of

all visible points in direction s , -w:s<i , starting at the origin, is

called a line of sight, Ls . Let P - (r,s) be a point in the plane,

in orientation s and distance r from the origin. A random disk (p,8,y)

intersects the line segment OP if, and only if, (p,a,y) belongs to

B(r,s) = {(p,e,y); (p,e) £ B(r,s,y), O<y-y*} , (2.5)

where the set B(r,s,y) is the set of all points having distances from

O,P smaller than y/2 . (See Fig. 1.) A disk which intersects a line

segment OP is said to cast shadow on P . Accordingly, a point

P - (r,s) is visible if N(B(r,s)nC} - 0 . Hence, a line of sight I s

has magnitude

IlL II - sup{r; N{B(r,s)nC} - 0} . (2.6)s

Notice that IL I11 is a random variable.
Let P - (r,s) be a point in the plane. Under the Poisson random-

ness assumption, the probability that P is visible is

Q(r,s) - P[N(B(r,s)nC} - 0]

- exp{-v{B(r,s)nC}} , (2.7)



CD 
/ O

CD
0

0

CL



-, - - -. - - -. - .- - : - = " , ' 7 " . . - : i : :' : ' " " -

-7-

where v{B(r,s)nC} is obtained according to (2.2). From this function

one can immediately obtain the distribution of i L ] Indeed,
SP{IIL ll>Z} = Q(L,s), 0 Z<o . (2.8)

Notice that in the standard case

v{B(r,s)nC O} -0 r , (2.9)

where is the expected value of a random diameter, Y , whose distri-

bution is G(y) . Indeed, for Y - y , the area of B0 - B(r,s)nC0  is

% 0 (Y) ry , as can be implied from Fig. 1. Accordingly, the distribu-

tion of IL 1I in the standard case is exponential with mean i/ps
where 9 - u • The present result can be further generalized when the

random objects are not necessarily disks in the plane. The same type

of result for infinitesimal objects is given in Feller (3, p.10].

Let P1 and P2 be two points in the plane having coordinates

(r(s1 ),s1 ) and (r(s2),s2) . A necessary and sufficient condition for

P1  and P2  to be simultaneously visible is that

N{(B(r(s1 ),S1 )uB(r(s2))nC} - 0

Since B(r(sl),S I ) and B(r(s2 ),s2 ) are generally not disjoint it is

more convenient to consider a union of disjoint sets obtained in the

followihg manner. Assume that the points (s,e,y) in C have ori-

entationcoordinatesin Css" . Define, for any s in [s',s'']

B+(s) - {(P,8,y): s<Pn-; s<<s''; (2.10)

and

B<(s) - {(p,,): Y <p<=; s'8<<s Oy<y*} (2.11)m_(s = ( , y):2sin(s-6)

B+(s) and B_(s) are sets of all points in C , on the right and on the

left of the ray with orientation s , which do not intersect it.

Accordingly, if s1<s2 , (B(r(s 1),sl)uB(r(s 2),s2))nC =

C - (((B_(sl)uB+(s 2))nC)u((B+(sI)nB_(s2 ))nC)) , where A-B is the

complement of B with respect to A. Thus, the probability that the

points P1 and P2 are simultaneously visible is

P(s 1ls 2 ) - expf-[v(C} - v{(B_(s 1 )uB+(s 2 ))nC} - v{(B+ (s1)nB_(s 2))hC}]} . (2.12)
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Generally, if s%:sl<...<s ns" are the orientation coordinates of n
points then the probability that they are simultaneously visible is

P(S,...s n ) = exp {LV{C} - vf(B_(s1)uB+(sn))nC}

- [ v{(B+(s i)nB_(Si+))nC (2.13)

i-
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3. Visibility Probabilities Of Points On Star-Shaped Curves Under A
Special Field Structure

Consider a star-shaped curve in the plane, C , such that each ray

originating at the origin, 0 , intersects C at most once. The curve

C is specified by a continuous positive function, r(s) , on the domain

[9',s"] , where -1 < s' < s" S r/2 . We furthermore require that

r(s) will have almost always continuous derivative.

The field structure is specified by the following assumptions on

the random nature of the distributions of the disks. First, we assume

that the random diameters, YI,Y2,... of the diiks are distributed over the

interval fa,b], where 0O5a<b<a . Furthermore, we specify two star-shaped

curves, U and W , between the origin, 0 , and C , so that the cen-

ters of the disks are distributed between U and W , and no disk can

either cover the origin or intersect C . More specifically, let

U - {u(8); 8'!0:58'} and W - {w(B); 8' 8''} ,

where [s',s''] c (8',6''] c [- j, ] . We impose the following field

structural conditions (see Fig. 2): Every point (p,6,y) in C1 , with

6 £ [e',e''] and y e [a,b] should satisfy the two conditions
b(C.1) 11 u (8) < 5 w(0)

(C.2) If a point P - (W(s),s) is on the circumference

of the disk j( (s),s) - (w(S),O)j - b/2 , then

w(O) cos (8-s) + (b)2- w2 () sin2 (-s)]1/2 < r(s)

Condition (C.1) guarantees that the origin cannot be covered. Condition

(C.2) assures that C is not intersected by any random disk in the

field. Since - 1- < s' < s'' S ir/2 , B_(s')nC1  and B+(s' ')'C are

disjoint. Let C be the subset of C1 containing only disks which

may cast shadows on C , i.e., they intersect line segments OP , where

PeC . According to (2.7), (2.10) and (2.11) , the visibility proba-

bility of a point P - (r(s),s) on is

P{N{B(r(s),s)nC} - 0 (3.1)

expe[{C}- v(B_()nC}- v{B+(s)nC}

S-V
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where

v{C} v{C 1  v{B (s')r.Z} - v{B+(s'')nC f (3.2)

and
all W(e)

V{C} . f ~f H(dg,de) .(3.3)

8' U(6)

Simultaneous visibility probabilities of several points on C are given

generally by formula (2.13). We develop now the technique of determining

the expected number of points in the sets B (s)nC or B+ (s)ciC



CD)
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4. Definition And Derivation of the K-Functions

II Given a point P - c(s),s) on C , let uK (s,t) and uK +(s,t)

denote the expected numbers of disks (p,e,y) e C1 with s-t<8<s and

s sBs+t , respectively, which do not intersect the line segment OP

These functions are given by

s w(8)
K(s,t) - f f G(y(p,s-e)Ip,e)H(do,de)

s-t u(e)

and (4.1)

s+t w(e)
K+(s,t) = f f G(y(p,e-s)Ip,e)H(dp,de)

s u(8)

where

2p sinr , if T<r/2
Y(,T)- (4.2)

2P, if rir/2

Indeed, when le-sl<r/2 , a disk centered at (p,e) does not inter-

sect OP if its diameter is smaller than 2psinle-sl . If, however,

le-sIl,/2 , the diameter of the disk should not exceed 2p

Thus, according to (3.2) and (4.1)

V{C} = v{C I - 4[K (s',s'-e') + K+(s'',8"-s'')] . (4.3)

Similarly, for all s e [s',s"]

v(B(s)nC} - u[K (s,s-e') - K (s',s'-e')]
(4.4)

v(B-(s)nC} I'K+(sG,'-s) -

Furthermore, for s':5s1 <s2 s '

V{ B+(s1)nB_ (s2)nC} -

s2-s I  s2-s
21K+(sl, - ) + K (s2 (4.5)

T v t -

The value t - 1 was selected in (4.5) to avoid the possibility that
a disk centered at (p,e) with s<8<s+t , which does not intersect OP

will nevertheless intersect OP2 , and vice versa.

For the purpose of evaluating (4.1) we introduce the auxiliary

functions
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,.7 V

K (s,de,v) f G(y(p,s-e)Ip,8)H(dP,d)
0

and (4.6)

V
K+(s,de, v) f G(y(p,6-s)hp,9)H(dp,de)

0

The K-functions are thus given by

S
K (s,t) - I (K (s,de,w(e)) - K(s,de,u(6))]

S-t

and (4.7)

s+t
K+(s,t) I (K+(s,de,w(G)) - K+(s,de,u(e))]

s

Notice that G(yip,e) - 0 for all y<a and G(yjp,e) - 1 for all y-b.
SAccordingly, from (4.6)

A(e-s,v,b)
K+(s,de,v) = I G(y(P,8-s)IP,6)H(dP,d8) +

A(@-s,v,a)

V

f H(dP,de) ,(4.8)

A(8-s,v,a)

where

in(v,2--) , if T<r/2

A(,r,v,x) - (4.9)

min(v,!) , if T-r/2

The function K_(s,de,v) can be obtained from (4.8) by replacing 6-s

by s-8 . In the standard case we substitute in the above formula

H(dp,de) - pdodS and d(ylp,e) - G(y) . As an example, we will continue

the derivations of the standard case and a uniform distribution of Y

over [a,b] , i.e.,

o0 , y<a

G(y) - b-a 9 a-yib (4.10)1 ,b-a y
i i , y>b
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Under these assumptions one obtains, for 8>s

A(6-s,vb)

K+(s,de,v) - !e (y(p,-s)-a)pdp ++ b-a I
A(B-s,v,a)

|+- (2 _ A (9-s,v,b))

0 ,if e-s<sin 1 (a)* 2v

d2 3 -a 2 1 a 3  -1 -lb-{--v sin (6.b " if sin (2-)%8-s<sin (b-a 3 sin iv 24 2v 2v

de r 2 a 2+ab+b 2-1 b
2 2 , ~~~~if sin ()8sT/ 411-: 12sin2 (e-s) v

de 2 a2+ab+b 2

T (V 12 ,if 8-s>v/2

As seen in (4.11), the function K+(s,Od,v) , in the standard-uniformcase,

be written as K+(s,de,v) - A(6-s,v,a,b)dB . Similarly, K_(s,d-,)
A(s-6,v,a,b)d8 where A(d-s,v,a,b) designates the R.U.S. of (4.11).

j

K
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5. The Measure of Visibility on C and Its Moments

Define the indicator function I(s), s'<s-s'' so that I(s) - 1

if (r(s),s) is a visible point and I(s) - 0 otherwise. The total

measure of the visible part of C is given by

S2 2 21/2~SwI V(C} -I I(s)[r2(s) + (r (s))2]I/

. S t

V{C} is the visibility measure of C In coverage problems it is known

also as the measure of vacancy (Ailam(l]).

The first moment (expected value) of V(C) is

S'

E{V(C)} - I EfI(s)}Z(s)ds , (5.2)

where Z(s) r2 (s) + (r (s))2]I/2 Moreover,

E(I(s)} - Q(r(s),s)

= exp{-v{C I} + p[K_(s,s-e ) +

K+Cs,.-s) (5.3)

V(CI} is given by (3.3) In the standard case it assumes the form

V(C1  all' 2 2 (4
V{C~l =2 [w (8) - u (8)]de (5.4)

Generally, for every na2 , the n-th moment of V(C} is given by

SIT. sit a n
E{V nC}} - I .... E E{ . I(si)} Z Z(s)dsi

S' Sw i-l 1-1

n (5.5)

U U! .. I P(Sl,. . .,'s n IT Z(si)dsi
iml

S" I<... SnS '5I

n

Indeed, E{ R I(sl)} is the probability that all the n points are
i-1

simultaneously visible. According to (2.13), (4.3), (4.4), and (4.5) we
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obtain, for every s'SslS... U s

P(s1,..., sn) exp{-v{C 1 }exp{uK_(sl 1,s 1 -a')

(5.6)K-C nU-1 s) -s Csi) + K -S)

+ nK+(sn'"-Sn) + U Z [K+Csi ' 2 -- (Si+l' 2~i-i

The n-th moment of V{C} , for n-l , can be computed according to (5.5)
and (5.6) in the following recursive manner. Define first

IF0 (s) - exp~uK_(s,s-e')} (5.7)

and for j-l,2,...,n-1 define

S
T Y(s) - f (Y)T.l(y)exp{u[K+(y, 2Y +

S
(5.8)

K(s, -- )])dy2

Then, for each nal

E (VnC}} - n! exp{-v{C 1}}

s' (5.9)
f I t(y)41n-l(Y)exp{4K+(y,6 ' ' -y)}dy

s

Finally, let L{C} denote the length of C . The distribution of

V{C}/L(C} is concentrated on (0,1] , with jumps at the two end points

0 and 1 and absolutely continuous elsewhere. It follows that

lim E{v((C}}/Ln{C} P{ -C L{C}} (5.10)
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1

6. Numerical Determination of the Moments of Visibility in the Standard-
Uniform Case and Annular Sector of Disks

In the present section we continue the development of the formulae

for the recursive determination of the moments, when the disks are dis-

tributed over the annular sector with

r(s) - r < < s' s s'' <2

w(e) -w , -. .< e' :s S " 2

and
ir

u(e) - , - 2 ' :5 ea 8 :

Here, 0 < b/2 < u < w < r - b/2

We consider the standard case, where the distribution of the disk diam-

eters, Y , is uniform (4.10). Thus, according to (4.7) and (4.11), the

K(s,t) functions, in the present case, do not depend on s , and satisfy

K+(st) - K_(s,t) - K*(t,w) - K*(t,u) , (6.1)

for all s , s':sss", where

t
K*(t,v) - A(Tv,ab)dT

0, if tssinl a

Kl(tv) , if sinl (-)st<sin -1 b

(6.2)

K2 (tv) , if sin-l(2 )5t<, /2

K3 (tv) , if tar/2

in which 2 2_oo12
K(t,v) - (4v2-a) 2v 2 t v

(6.3)
2L1/2 c t]

n-(a- + a [(4v2- 2

w*~~- F
-

--- -a a c-.-.- - . -, . .
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S2 221/2 221/2 -l 1b
K2 (tv) -a 3j- (4v2 -a 2 ) -(4vb) I [in-

a3  ( 2  1 (42b2)1/2]ia 2  1 2 2

v2-l b a 2 +ab+b2  1 2 2 1/2
+-- (t- sin (-v) 24 (t v-b

- cotan t) , (6.4)

and

K3(t,v) K K(!,V) + (t v) 2 a2+ab+b (6.5)3 2 22 - 24

Notice that in the present case, Z(s) - r for all s'<sSs'' . Hence,

the moments of V{C} can be determined according to (5.4), (5.7)-(5.9)

and (6.1) in the following manner.

Let

- exp{- I (w2-u2) (e-e')} , (6.6)

IF(S) - exp{(l.K*(s-@',w) - K*(s-e',u)]} , (6.7)

and

H(s) - exp(u[K*(e''-s,w) - K*(o''-s,u) ] (6.8)

for s'- s' '•

Define recursively, for every jzl ,

5

IF -( S) If (y)exp{2(K*(-2 ,w) - K*(s- ,u)]}dy . (6.9)

The n-tb moment of V{C} is then

U= Xn'rn ' 'Y1 (s)Hfs)ds .(6.10)

Let P1  be the probability that V(C} - L(C} , which is the proba-

bility that C is completely visible. According to (3.2) and (3.3)

P1  x exp{U[K*(s'-e',w) - K*(s'-e',u) +

K*(e"-",v) - K*(e"'-s' ',u) ]} (6.11)



The numerical determination of the moments a was performed in the

following manner. The interval [s',s''] was partitioned to M sub-

intervals of length a - (s'"-s')/M . The grid points for the computa-

tion are then s =s'+j4 , J-O,,...,.4 . The functions To(s) and G(s)

were computed exactly for each J=O,...,M The functions T k(s),kal

were then computed at the grid points s , according to the numerical

integration formula

0 , if J-0

2(IFkl(s0)expf2u K (K ) + T k-1(s1)) , if j-l (6.12)

k (sd) - (x(So) z4 K (.-)} + IF (s +

-1 4 (s)exp{2- K, if j>2

i-i

where 1(t) - K*(t,w) - K*(t,u) . Finally, the n-th moment of V(C) is

determined by the formula

- Xn~rnA(QT _(S) (s o ) + 'IF s ) H(s ))/2

no- n-i M rn

M-1+ zT a-1(s j)H (s i)1 (6.13)
j=l

If the value of M is large one obtains very good approximation by

applying formulae (6.12)-(6.13). In Table 6.1 we provide the first

tan normalized moments of V{C) , i.e., u /(r(s"-s')) , for the case

of s' - -7/18, s'' - -s' , M-60 r-l , u-.5 w-.75 a-. and b-.3

The values of u (the Poisson intensity) are 1(2)9
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Table 6.1 The Normalized Moments of V(C) and Their Beta-Mixture

Approximations, for s'-/18, s"-s', M-60, r-l., u-.5,

w-.75, a-.1, b-.3

Intensity Normalized Moments

11 1 2 3 4 5 6 7 8 9 10

1. 0.951 0.934 0.926 0.921 0.918 0.917 0.917 0.919 0.921 0.925 .901

0.951 0.934 0.926 0.921 0.917 0.915 0.913 0.912 0.910 0.910

3. 0.860 0.816 0.794 0.781 0:773 0.768 0.765, 0'763- 0.763 0.765 .730

0.8.60 0.816 0.794 0.780 0.772 0.765 0.761 0.757 0.754 0.752

5. 0.77% 0.713 0.681 0.662 0.650 0.643 0.638 0.634 0.633 0.633 .592

0.778 0.713 0.681 0.662 0.649 0.640 0.634 0.629 0.625 0.621

7. 0.703 0.623 0.584 0.562 0.548 0.538 0.532 0.527 0.525 0.524 .480

0.703 0.623 0.584 0.562 0.547 0.536 0.528 0.522 0.518 0.514

9. 0.636 0.545 0.502 0.477 0.461 0.451 0.444 0.439 0.435 0.434 .389

0.636 0.545 0.502 0.477 0.460 0.449 0.440 0.434 0.429 0.425

Notice that u.P 1
As in the previous study of Yadin and Zacks [10], the distribution of

V{C}/r(s''-s') is approximated by a mixture of a beta-distribution with

a discrete distribution concentrated on 0 and 1 . The mixed distri-

bution of the normalized visibility measure, v*{CI - V(C}/r(s''-s')

has a c.d.f.

* (1P~P) 1 x y 1(-i y)-dy
F (x) +(-P0-P )  (1-Y) 1 if 0x<l (6.14)

1 ,if xal

Since the value of P is known, we determine f (x) , in the various

cases, by equating the first three moments of (6.14) to the moments of

V(C} • The n-th moment of (6.14) is

a P1 + (1-P0-P1) 'a+$) (a+6+1)...(a+O+n-1) n21 (6.15)
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Accordingly, if cn - u -p , then
,n-

2cl2_

(ci-c2) (c2-c3)
1 3 2

c 1c 3-c 2

andand - 1 c (a+s)
P0 " -1 a

In Table 6.2 we provide the values of a (2(i)2) 1/2  Pp and

corresponding to the cases of Table 6.1. We have also computed the

first ten moments of (6.14) according to the parameters determined by
*

the true moments, un , and presented them in Table 6.1 (lower line of

each case).

We see that the actual moments and the ones of the approximating dis-
tribution are extremely close. This indicates that the mixed-beta

distribution is apparentl.; very close to the true one. We obtain in

this manncr also an estimate of the probability of complete coverage,

P0 * An explicit formula for this parameter is not yet available.

Table 6.2 Parameters of the Mixed-Beta Approximating Distribution

(Specifying parameters as in Table 6.1)

Intensity
1. a 0  P IB

1 .1733 .0020 .9005 1.1161 1.0398

3 .2765 .0152 .7302 1.1405 1.0967

5 .3290 .0326 .5921 1.0956 1.1194

7 .3590 .0536 .4801 1.0450 1.1386

9 .3754 .0768 .3893 0.9937 1.0967
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In order to realize the effect of different case parameters on the.

results, we present in Table 6.3 the first 10 moments, n , of

V (C) , for a longer curve (s'=--n/3, s''--s') . The computation

was performed on a grid of M-180 subintervals. The intensities

u are 1(2)9, and the distribution of the disk diameters

is uniform on (0.1,0.3).
We do not present the moments of (6.14), which correspond to these

cases, since they are very close to the actual moments. The results

of the computations presented in Table 6.3 show similar trends to

those indicated in Tables 6.1 and 6.2.

Table 6.3 Normalized Moments, V (C) , And The Parameters of The Mixed
Beta Distribution for the Cases Of s'--i/3, s''--s', rl.,

il-.5, w-.75, a-.1, b-.3 and M180.

1 2 3 4 5 6 7 8 9 10

1 .951 .912 .880 .854 .832 .814 .799 .787 .776 .767 .686

3 .860 .758 .682 .623 .577 .541 .511 .487 .467 .451 .322

5 .778 .631 .529 .456 .402 .360 .328 .303 .282 .266 .152

7 .703 .526 .412 .335 .280 .241 .212 .189 .171 .157 .071

9 .636 .438 .321 .246 .196 .162 .137 .118 .104 .094 .033

Table 6.5 Parameters of The Mixed-Beta Approximating Distribution

(Specifying Parameters as in Table 6.3)

i1
a P 0 P 1 a''

1 .0856 0 .6856 15.8793 2.9360

3 .1364 0 .3223 8.9669 2.3286

5 .1619 0 .1515 6.3166 2.2383

7 .1762 0 .0712 4.9572 2.3287

9 .1838 0 .0335 4.1394 2.5105
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